GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S1

Paper C

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer

S1 Paper C - Marking Guide

1. (a) e.g. using a distribution or other simplified way of representing a real situation that allows predictions to be made about it

B2
(b) Normal B1
(c) e.g. most values close to mean; roughly symmetrical B2
(d) e.g. male and female mean weights may differ giving bimodal dist ${ }^{\mathrm{n}} \quad$ B1
(6)
2. (a)

(b) $S_{Y Y}=140-\frac{28^{2}}{8}=42$

M1
$S_{T T}=4173.93-\frac{182.5^{2}}{8}=10.64875$
M1
$S_{Y T}=644.7-\frac{28 \times 182.5}{8}=5.95 \quad$ M1
$r=\frac{5.95}{\sqrt{42 \times 10.64875}}=0.2813$
M1 A1
(b) 8 pairs $\therefore+0.2813$ is only weak evidence of June getting warmer B1
3. (a) $\frac{57-16}{120}=\frac{41}{120}$

M1 A1
(b) $\frac{85}{120}=\mathrm{P}(C)+\frac{57}{120}-\frac{16}{120}$ M2
$\mathrm{P}(C)=\frac{85-57+16}{120}=\frac{44}{120}=\frac{11}{30}$
M1 A1
(c) $\mathrm{P}\left(C^{\prime} \mid D^{\prime}\right)=\frac{\mathrm{P}\left(C \cap D^{\prime}\right)}{\mathrm{P}\left(D^{\prime}\right)}$

M2

$$
=\frac{\frac{35}{120}}{1-\frac{57}{120}}=\frac{35}{63}=\frac{5}{9}
$$

M1 A1
(10)
4.

(a)	$b=\frac{594.05}{85.44}=6.953$	M1
	$\begin{aligned} & a=104.4-(6.953 \times 4.92)=70.192 \\ & c=70.2+6.95 v \end{aligned}$	M1 M1 A1
(b)	$a=$ no. of sign-ups without an advert	B1
	$b=$ no. of extra sign-ups per million viewers of advert	B1
(c)	$70.192+(6.953 \times 3.7)=95.92 \therefore 96$	M1 A1
(d)	e.g. type of programme; length of advert	B2

5. (a) $\mathrm{P}\left(Z<\frac{28-25}{\sqrt{16}}\right)=\mathrm{P}(Z<0.75)=0.7734$

M2 A1
(b) $\mathrm{P}\left({ }^{-} 5<T-25<5\right)=\mathrm{P}\left(\frac{20-25}{4}<Z<\frac{30-25}{4}\right)$

M2
$=\mathrm{P}\left({ }^{-} 1.25<Z<1.25\right)=0.8944-0.1056=0.7888$
(c) $\mathrm{P}(T<23)=\mathrm{P}(Z<0.5)=0.6915$

M1 A1
$\mathrm{P}(3$ bikes, each $<23 \mathrm{mins})=(0.6915)^{3}=0.3307$
M1 A1
M1 A1
(11)
6. (a) freq. dens. $=0.05,0.4,0.65,0.6,0.9,0.55,0.225,0.05$

M1 A1

B2
(b) $\quad y$ values $={ }^{-} 8,-4,{ }^{-} 2,0,2,4,7,14$

M1
$\sum f y=(-8 \times 3)+(-4 \times 8)+\ldots=131$
M1 A1
(c) $\quad \sum f=79 ; \quad \bar{y}=\frac{131}{79}=1.658$

M1

$$
\bar{x}=(10 \times 1.658)+509.5=526.1
$$

std. dev. of $y=\sqrt{\frac{2041}{79}-1.658^{2}}=4.805$
M1 A1
std. dev. of $x=10 \times 4.805=48.0$
M1 A1 (13)
7. (a) $\frac{4}{6} \times \frac{2}{5}=\frac{4}{15}$

M1 A1
(b) same method, giving

b	1	2	3	4	5
$\mathrm{P}(B=b)$	$\frac{1}{3}$	$\frac{4}{15}$	$\frac{1}{5}$	$\frac{2}{15}$	$\frac{1}{15}$

M2 A2
(c) $\quad \sum b \mathrm{P}(b)=\frac{1}{15}(5+8+9+8+5)=\frac{35}{15}=\frac{7}{3}$

M2 A1
(d) $\mathrm{P}($ winning $)=\frac{1}{3}+\frac{4}{15}=\frac{3}{5}$

M1 A1
expected winnings $=\frac{3}{5} \times 50=30$ pence
M1 A1
(e) $(3 \times 30)-100={ }^{-} 10 \quad \therefore 10$ pence loss

M2 A1 (16)

Performance Record - S1 Paper C

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	modelling	$\begin{array}{\|l\|l} \text { scatter } \\ \text { diagram } \\ \text { pmcc } \end{array}$	probability	regression	$\begin{array}{\|c} \text { normal } \\ \text { distt } \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { histogram, } \\ \text { coding } \end{array} \\ \hline \end{array}$	probability, discrete r. v.	
Marks	6	9	10	10	11	13	16	75
Student								

